
Random walks and
anisotropic interpolation
on graphs.

Filip Malmberg

Interpolation of missing data
Assume that we have a graph where we have defined some (real)
values for a subset of the nodes, and that we want to somehow “fill
in” the missing data for the remaining nodes.

? 4.1

1.2

3

?

?

?

?

?

?
?

?

?

Figure 1: Interpolation of missing data.

Part 1: Smooth interpolation

Interpolation of missing data

In the absence of other information, we might seek a solution that is
“smooth” in some sense.

Intuitively, a function is smooth if the value of a vertex is similar to
that of its neighbors.

In this lecture, we will consider a method for finding solutions x where∑
w∈N (v)

w(evw)|xv − xw |2 (1)

is as small as possible for all v ∈ V .

Continuous Dirichlet problem

The Dirichlet integral may by defined as

D[u] =
1

2

∫
Ω
|∇u|2dΩ . (2)

for a field u and region Ω. A harmonic function is a function that satisfies
the Laplace equation

∇2u = 0 . (3)

The problem of finding a harmonic function subject to its boundary values
is called the Dirichlet problem. The harmonic function that satisfies the
boundary conditions minimizes the Dirichlet integral.

Harmonic functions

Harmonic functions have three properties that make them suitable for
generating ”smooth” interpolations:

The mean value theorem states that the value at each point in the
interior (i.e., not a boundary point) is the average value of its
neighbors.

The maximum principle states that harmonic functions may not take
values on interior points that are greater (or less) than the values
taken on the boundary.

The Dirichlet integral is minimized by harmonic functions. This
means that the integral of the gradient magnitudes for the system will
be minimized, subject to fixed boundary conditions.

Moving to discrete calculus

We will now formulate a disrete (combinatorial) version of the
Dirichlet problem. This is one example of discrete calculus - an
attempt to formulate a theoretical framework that provides a discrete
counterpart of the continuous calculus.

In contrast to traditional goals of finding an accurate discretization of
conventional multivariate calculus, discrete calculus establishes a
separate, equivalent calculus that operates purely in the discrete
space without any reference to an underlying continuous process.

A book on this subject ([4]) is available in the CBA library.

Preliminaries

We consider a undirected graph G = (V ,E).

We associate each edge e ∈ E with a real valued weight w(e) > 0.

The degree of a vertex vi is defined as

di =
∑

w(eij) (4)

for all edges eij incident on vi .

The discrete Dirichlet problem

We define the discrete Laplacian matrix as

Lvivj =

dvi if i = j
−wij if vi and vj are adjacent nodes
0 otherwise

. (5)

where Lvivj is used to indicate that the matrix L is indexed by vertices vi
and vj .

The discrete Dirichlet problem

Let x be a vector of length |V |, representing a value at each vertex of
the graph.

A combinatorial formulation of the Dirichlet integral is

xTLx . (6)

We seek a function x that minimizes (6) subject to the boundary
conditions. Such a function is called a combinatorial harmonic.

A closer look at the combinatorial Dirichlet integral

What does xTLx mean? Let’s spell it out:

First, Lx is a vector, whose elements are sums of difference equations∑
w∈N (v)

w(evw)(xv − xw) , (7)

where xv is the element in x that corresponds to the vertex v .

Thus, xTLx is a scalar, that can be written as follows:∑
v∈V

∑
w∈N (v)

w(evw)|xv − xw |2 . (8)

A closer look at the combinatorial Dirichlet integral

What does xTLx mean? Let’s spell it out:

First, Lx is a vector, whose elements are sums of difference equations∑
w∈N (v)

w(evw)(xv − xw) , (9)

where xv is the element in x that corresponds to the vertex v .

Thus, xTLx is a scalar, that can be written as follows:∑
v∈V

∑
w∈N (v)

w(evw)|xv − xw |2 . (10)

What is the role of the edge weights?

Since we have required the edge weights to be greater than zero, we
can interpret 1/w(evw) as a distance between vertices v and w .

Thus, the weights define a metric.

Figure 2: A 2D image, interpreted as a 3D surface.

The Discrete Dirichlet problem, solution

Partition the vertices of the graph into two sets, VM (marked
nodes/seedpoints) and VU (unmarked nodes). We can then reorder the
matrix L to reflect the subsets

L =

[
LM B
BT LU

]
. (11)

The Discrete Dirichlet problem, solution

Let xm be the (known) values at the marked vertices, and let xu be the
(unknown) values of the unmarked vertices. As shown in [5, 1], the
solution to the combinatorial Dirichlet problem may be found by solving

LUxu = −Bxm . (12)

This is a sparse, symmetric, positive-definite, system of linear equations
with |xu| number of equations. If the graph is connected (or every
connected component contains a marked vertex) then LU is guaranteed to
be non-singular. Thus the solution is guaranteed to exist and be unique.

Numerical practicalities

We have seen that the Dirichlet problem can be reduced to solving a
large, sparse, symmetric, linear system of equations. There are, of
course, many methods for doing this.

Direct methods (i.e. LU decomposition etc.) do not preserve the
sparseness of the matrix, and are therefore not practical for the very
large systems we consider here.

Instead, iterative solvers can be used. See [3, 2] for details. In [3], a
computation time of a few seconds was reported for a 1024× 1024
image.

Connection with random walks

We will now look at another interpretation of the combinatorial Dirichlet
problem, describe in [2].

Imagine a ”random walker” moving through graph by stepping
between adjacent vertices.

At each step, the probability of going from the current node to one of
its neighbors is given by the weight of the edge connecting those
nodes.

Assume that each marked vertex has either value 0 or 1. Then the
solution to the combinatorial Dirichlet problem answers, for each
unmarked vertex, the question ”Given a random walker starting at
this vertex, what is the probability that it first reaches a marked node
with label 1?”

Application to seeded segmentation

We will now look at how these techniques can be used for seeded
segmentation.

For binary image segmentation, we can assign a value of 1 to
foreground seeds and a value of 0 to background seeds. All non-seed
vertices have unknown values. By solving this Dirichlet problem we
obtain, for each vertex, the probabilite that a random walker starting
at the node reaches a foreground seed first. If this probability is
greater than 1

2 , we say that the vertex belongs to the foreground.

For K object labels, we need to solve K − 1 linear systems (The
probabilities must sum to one). This gives us, for all vertices and all
labels, the probability that a random walker starting at the vertex
reaches a seed with the given label first. A final segmentation is
obtained by assigning to each vertex the label of the seed it is
expected to reach first.

Application to seeded segmentation

Figure 3: Seeded segmentation with Random walks.

Properties of the Random Walker segmentation method

The segmentations obtained by the Random Walker method satisfies the
following nice properties

Each segment is guaranteed to be connected to a seed point with the
same label, i.e., there are no isolated components that do not contain
seedpoints. (Controversial!)

The K -tuple of probabilities at each vertex is equal to the weighted
average of the K -tuples of the adjacent vertices.

The solution for the probabilities is unique.

The expected segmentation for an image of pure noise is equal to
that obtained for a flat image. (”Voronoi-like”)

Comparison with minimum cost paths

With seeded segmentation based on minimum cost paths (IFT), the
label of each vertex is determined by the minimum cost path to the
set of seedpoints.

With Random walker segmentation, we are considering the cost of all
possible paths between each vertex and the set of seedpoints.

Robustness to weak boundaries

Figure 4: Example of seeded segmentation with Random walks preserving missing
boundaries.

Robustness to weak boundaries

Figure 5: Illustration of why segmentation by Random walks preserves missing
boundaries.

Robustness to weak boundaries

Figure 6: Comparison with minimal graph cuts.

Connection with anisotropic diffusion

The solution of the Dirichlet problem can also be interpreted as the
steady-state solution of a diffusion process.

(Show Matlab example.)

Part 2: Guided interpolation

Guided interpolation: Poisson image processing
In previous examples, we tried to minimimize gradients subject to
boundary constraints.
Now, we will instead try to make the gradients of the interpolated
region match a pre-defined “gradient field”.

Figure 7: Guided interpolation. Unknown function f interpolates in domain Ω the
destination function f ∗ under guidance of vector field v, which may or may not
be a gradient field of a source function g .

Continuous formulation

We consider an extended version of the Dirichlet integral:

D[u] =
1

2

∫
Ω
|∇u − v|2dΩ . (13)

for a field u and region Ω. This integral is minimized by solutions of the
Poisson equation with Dirichlet boundary conditions:

∇2u = div v . (14)

Discrete formulation

Just like the Laplace equation, the Poisson equation has a
combinatorial equivalent that can be written as a linear system of
equations.

For details, see [6].

Image manipulation in the ”gradient domain”

The values of an image are uniquely determined by the gradient vectors
(and a constant). This allows to use the following image manipulation
pipeline:

Compute the gradient vector field of (the whole or parts of) the
image.

Manipulate the gradient vectors in some way.

Solve the Poisson equation to obtain the ”inverse” of the gradient
field.

If the vector field is conservative (i.e., it is a ”valid” gradient field of
some function) then the gradients of the resulting image values will
match the vector field exactly. Otherwise, it will still be as close as
possible, according to the L2-norm.

Poisson image editing, examples

Figure 8: By supressing low magnitude gradients in parts of the image, textures
and noise can be removed.

Poisson image editing, examples

Figure 9: By selectively replacing parts of the gradient field with that from
another image, we can perform seamless cloning of objects between images.

Poisson image editing, examples

Figure 10: By selectively replacing parts of the gradient field with that from
another image, we can perform seamless cloning of objects between images.

Poisson image editing, examples

Figure 11: Fuzzy segmentation obtained by solving the Poisson equation within
unkown regions of a ”trimap”. Image from [7].

Poisson image editing, examples

Figure 12: Fuzzy segmentation obtained by solving the Poisson equation within
unkown regions of a ”trimap”. Image from [7].

Conclusions

We have introduced a set of tools for interpolating missing data on
graph vertices.

By solving the (discrete) Laplace equation, we obtain interpolations
that are as smooth as possible, according to some (possibly
anisotropic) metric.
By solving the (discrete) Poisson equation, we obtain interpolation
whose gradients match those of a given ”guidance” vector field as well
as possible.

In both cases, solutions can be found by solving large, sparse, systems
of linear equations.

Solutions of the Laplace equation can be interpreted in terms of
random walks in the graph.

These tools have many applications in segmentation, image
manipulation, etc.

References
[1] L. Grady.

Space-Variant Machine Vision — A Graph Theoretic Approach.

PhD thesis, Boston University, 2004.

[2] Leo Grady.

Random walks for image segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(11):1768–1783, 2006.

[3] Leo Grady.

A lattice-preserving multigrid method for solving the inhomogeneous poisson
equations used in image analysis.

In Computer Vision – ECCV 2008, volume 5303 of LNCS, pages 252–264.
Springer, 2008.

[4] Leo Grady and Jonathan R. Polimeni.

Discrete Calculus: Applied Analysis on Graphs for Computational Science.

Springer, 2010.

[5] Leo Grady and Eric Schwartz.

Anisotropic interpolation on graphs: The combinatorial Dirichlet problem.

Technical Report CAS/CNS-TR-03-014, Department of Cognitive and Neural
Systems, Boston University, Boston, MA, July 2003.

[6] Patrick Pérez, Michel Gangnet, and Andrew Blake.

Poisson image editing.

ACM Trans. Graph., 22(3):313–318, 2003.

[7] Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum.

Poisson matting.

ACM Transactions on Graphics, 23(3), 2004.

